Contributions to Group Theory This volume grew out of a desire by the editors to honor their teacher, Roger Lyndon, on the occasion of his sixty-fifth birthday. Five short articles about Lyndon and his contributions to mathematics, as well as twenty-seven invited research papers in combinatorial group theory and closely related areas are contained in this book. It is a tribute to Lyndon's mathematical breadth that papers covering such a wide array of topics are all closely related to the work he has done. Several of the articles fall into subfields of combinatorial group theory, areas in which much of the initial work was done by Lyndon. Remaining research articles fall into various subfields of homological groups, another area in which he has made major contributions. Research articles, written by some of the leading practitioners in the field, are listed below.There is a biographical essay about Lyndon by Kenneth Appel, and there are expository articles about his work by Saunders MacLane, John Ratcliffe, Jerome Keisler and Paul Schupp. MacLane describes the results in Lyndon's doctoral thesis and explains how they fit into the early history of spectral sequences while Ratcliffe presents Lyndon's fundamental work in cohomology of groups in the early part of his career. His work in logic, especially his fundamental results in model theory in the mid 1950s is discussed by Keisler. Lyndon's contribution to group theory over the past twenty years is described by Schupp.A Treatise on the Line Complex Jessop C. M. (Charles Minsha 1861-1939Unlike some other reproductions of classic texts (1) We have not used OCR(Optical Character Recognition), as this leads to bad quality books with introduced typos. (2) In books where there are images such as portraits, maps, sketches etc We have endeavoured to keep the quality of these images, so they represent accurately the original artefact. Although occasionally there may be certain imperfections with these old texts, we feel they deserve to be made available for future generations to enjoy.Complex Analysis Lars AhlforsA standard source of information of functions of one complex variable, this text has retained its wide popularity in this field by being consistently rigorous without becoming needlessly concerned with advanced or overspecialized material. Difficult points have been clarified, the book has been reviewed for accuracy, and notations and terminology have been modernized. Chapter 2, Complex Functions, features a brief section on the change of length and area under conformal mapping, and much of Chapter 8, Global-Analytic Functions, has been rewritten in order to introduce readers to the terminology of germs and sheaves while still emphasizing that classical concepts are the backbone of the theory. Chapter 4, Complex Integration, now includes a new and simpler proof of the general form of Cauchy's theorem. There is a short section on the Riemann zeta function, showing the use of residues in a more exciting situation than in the computation of definite integrals.Advances in the Theory of Riemann Surfaces. Lars Valerian Ahlfors, Lipman BersIntended for researchers in Riemann surfaces, this volume summarizes a significant portion of the work done in the field during the years 1966 to 1971.Studies in Modern Algebra A. A. AlbertLocal Representation Theory: Modular Representations as an Introduction to the Local Representation Theory of Finite Groups J. L. AlperinRepresentation theory has applications to number theory, combinatorics and many areas of algebra. The aim of this text is to present some of the key results in the representation theory of finite groups. Professor Alperin concentrates on local representation theory, emphasizing module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. Exercises are provided at the end of most sections; the results of some are used later in the text.Geometry of Algebraic Curves: Volume I Enrico Arbarello, Maurizio Cornalba, Phillip Griffiths, Joseph Daniel HarrisIn recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).Basic Topology M.A. ArmstrongIn this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.Mathematical Methods of Classical Mechanics V. I. ArnoldThis book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.Representation Theory of Lie Groups M. F. Atiyah, R. Bott, S. Helgason, D. Kazhdan, B. Kostant, G. LustztigLie groups and their representations occupy an important place in mathematics with applications in such diverse fields as differential geometry, number theory, differential equations and physics. In 1977 a symposium was held in Oxford to introduce this rapidly developing and expanding subject to non-specialists. This volume contains the lectures of ten distinguished mathematicians designed to provide the reader with a deeper understanding of the fundamental theory and appreciate the range of results. This volume contains much to interest mathematicians and theoretical physicists from advanced undergraduate level upwards.Introduction To Commutative Algebra Michael AtiyahThis book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.Linear Algebra Done Right Sheldon AxlerThis text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.Introduction to Classical Integrable Systems Olivier Babelon, Denis Bernard, Michel TalonIntroducing the reader to classical integrable systems and their applications, this book synthesizes the different approaches to the subject, providing a set of interconnected methods for solving problems in mathematical physics. The authors introduce and explain each method, and demonstrate how it can be applied to particular examples. Rather than presenting an exhaustive list of the various integrable systems, they focus on classical objects which have well-known quantum counterparts, or are the semi-classical limits of quantum objects. They thus enable readers to understand the literature on quantum integrable systems.The Elements of Real Analysis, Second Edition Robert G. BartlePresents the basic theory of real analysis. The algebraic and order properties of the real number system are presented in a simpler fashion than in the previous edition.The Geometry of Discrete Groups Alan F. BeardonThis text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.Local Analysis for the Odd Order Theorem Helmut Bender, George GlaubermanIn 1963 Walter Feit and John G. Thompson published a proof of a 1911 conjecture by Burnside that every finite group of odd order is solvable. This proof, which ran for 255 pages, was a tour-de-force of mathematics and inspired intense effort to classify finite simple groups. This book presents a revision and expansion of the first half of the proof of the Feit-Thompson theorem. Simpler, more detailed proofs are provided for some intermediate theorems. Recent results are used to shorten other proofs.Introduction to Several Complex Variables: Lectures by Lipman Bers 1962-1963 Lipman Bers, Marion S. Weiner, Joan LandmanRiemann Surfaces Lipman BersUniformization, moduli and Kleinian groups Lipman BersComplex Abelian Varieties Christina Birkenhake, Herbert LangeThis book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ". . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.Topology and Geometry Glen E. BredonThis book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory.From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS Plane Algebraic Curves BRIESKORN, KNÖRRERIntroduction to Algebraic Topology And Algebraic Geometry U. BruzzoIntroduction to Algebraic Topology And Algebraic Geometry By U. BruzzoTheory of Groups of Finite Order William BurnsideTheory of Groups of Finite Order is presented here in a high quality paperback edition. This publication is professionally scanned from an original edition of the book, and of the best possible quality. This popular classic work by William Burnside is in the English language. If you enjoy the works of William Burnside then we highly recommend this publication for your book collection.Singularities of Plane Curves Eduardo Casas-AlveroThis comprehensive and self-contained exposition of the algebro-geometric theory of singularities of plane curves covers both the classical and modern aspects of the field. It gives a unified treatment with complete proofs and presents modern results which have only appeared in research papers. It updates and correctly proves a number of important classical results for which there was formerly no suitable reference. With new, previously unpublished results as well as applications to algebra and algebraic geometry, this book will be useful as a reference text for researchers in the field. It is also suitable as a textbook for postgraduate courses on singularities.Rational Quadratic Forms J. W. S. Cassels, MathematicsThis exploration of quadratic forms over rational numbers and rational integers offers an excellent elementary introduction to many aspects of a classical subject, including recent developments. The author, a Professor Emeritus at Trinity College, University of Cambridge, offers a largely self-contained treatment that develops most of the prerequisites.Topics include the theory of quadratic forms over local fields, forms with integral coefficients, genera and spinor genera, reduction theory for definite forms, and Gauss' composition theory. The final chapter explains how to formulate the proofs in earlier chapters independently of Dirichlet's theorems related to the existence of primes in arithmetic progressions. Specialists will particularly value the several helpful appendixes on class numbers, Siegel's formulas, Tamagawa numbers, and other topics. Each chapter concludes with many exercises and hints, plus notes that include historical remarks and references to the literature.Automorphisms of Surfaces after Nielsen and Thurston Andrew J. Casson, Steven A. BleilerA Scrapbook of Complex Curve Theory C. Herbert ClemensThis fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of 'impressions' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.On Quaternions and Octonions John Horton Conway, Derek SmithThis book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization. Topics covered include the geometry of complex numbers, quaternions and 3-dimensional groups, quaternions and 4-dimensional groups, Hurwitz integral quaternions, composition algebras, Moufang loops, octonions and 8-dimensional geometry, integral octonions, and the octonion projective plane.Introduction to Geometry H. S. M. CoxeterThis classic work is now available in an unabridged paperback edition. The Second Edition retains all the characterisitcs that made the first edition so popular: brilliant exposition, the flexibility permitted by relatively self-contained chapters, and broad coverage ranging from topics in the Euclidean plane, to affine geometry, projective geometry, differential geometry, and topology. The Second Edition incorporates improvements in the text and in some proofs, takes note of the solution of the 4-color map problem, and provides answers to most of the exercises.Generators and Relations for Discrete Groups H.S.M. & MOSER, W.O.J. COXETERMethods of Representation Theory: With Applications to Finite Groups and Orders, Vol. 1 Charles W. Curtis, Irving ReinerThis paperback edition of the standard algebra text reviews the development of the representation theory of finite groups and associative algebras and discusses applications and connections with other parts of mathematics. The authors incorporate a self-contained account of the three main branches of representation theory - ordinary, modular, and integral - and demonstrate the connections between them. There is a wealth of illustrative examples and auxiliary results, and almost every section contains exercises.Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis, Irving ReinerThis book offers a self-contained and up-to-date account of the representation theory of finite groups and associative rings and algebras. It pays particular attention to the theory of induced characters and induced representations, quasi-Frobenius rings and Frobenius algebras, integral representations, and the theory of modular representations. While emphasizing general methods and building the theory on the study of modules over rings with minimal condition, the book features enough examples and problems to help the researcher who needs to compute explicit representations for particular groups. In addition, the text includes some applications of group representations to the structure theory of finite groups, and a survey of current literature dealing with these applications. Neither encyclopedic nor historical in nature, this work concentrates instead on the most important and fruitful results, yet includes as much preliminary material as necessary for their proofs.Algebraic Geometry I: Algebraic Curves, Algebraic Manifolds and Schemes V.I. Danilov, V.V. Shokurov, I. Shafarevich"... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics." —Acta Scientiarum MathematicarumTores et variétés abéliennes complexes Olivier DebarreAlgebraic Topology Tammo Tom DieckThis book is written as a textbook on algebraic topology. The first part covers the material for two introductory courses about homotopy and homology. The second part presents more advanced applications and concepts (duality, characteristic classes, homotopy groups of spheres, bordism). The author recommends starting an introductory course with homotopy theory. For this purpose, classical results are presented with new elementary proofs. Alternatively, one could start more traditionally with singular and axiomatic homology. Additional chapters are devoted to the geometry of manifolds, cell complexes and fibre bundles. A special feature is the rich supply of nearly 500 exercises and problems. Several sections include topics which have not appeared before in textbooks as well as simplified proofs for some important results. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (master's) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included. A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.Lectures on Algebraic Topology Albrecht Dold, A. DoldSpringer is reissuing a selected few highly successful books in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. Springer-Verlag began publishing books in higher mathematics in 1920. This is a reprint of the Second Edition.Classical Algebraic Geometry: A Modern View Igor V. DolgachevAlgebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.Group Representation Theory (in 2 parts). Part A: Ordinary Representation Theory. Part B: Modular Representation Theory. (=Pure and applied Mathematics, Vol. 7). [2 vols]. Larry DornhoffGroup representation theory. Part A: Ordinary Representation Theory Larry L DornhoffThis book grew out of a year course in representation theory of finite groups given at the University of Illinois during 1969-1970. Its primary purpose is to provide a readable account of several major applications of representation theory to the structure of finite groups. The book should serve well as a text for a graduate course in representation theory and be useful for individual study by graduate students and mathematicians wishing to familiarize themselves with the subject. Part A separately should be useful as a text for a course in ordinary representation theory, with applications; exercises have been included in Part A to aid in this purpose. This book presupposes knowledge of only several basic topics in algebra. These include the Sylow theorems and the structure of finite abelian groups from group theory; the structure of finitely generated modules over principal ideal domains; the notion of tensor product of modules over noncommutative rings; and occasionally basic Galois theory of fields. In Part A, we begin by developing the structure theory for semi-simple rings with unit.Abstract Algebra, 3rd Edition David S. Dummit, Richard M. FooteWidely acclaimed algebra text. This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings.* The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible. Low-dimensional Topology and Kleinian Groups D. B. A. EpsteinVolume 2 is divided into three parts: the first 'Surfaces' contains an article by Thurston on earthquakes and by Penner on traintracks. The second part is entitled 'Knots and 3-Manifolds' and the final part 'Kleinian Groups'.Riemann Surfaces Hershel M. Farkas, Irwin KraThis text covers Riemann surface theory from elementary aspects to the fontiers of current research. Open and closed surfaces are treated with emphasis on the compact case, while basic tools are developed to describe the analytic, geometric, and algebraic properties of Riemann surfaces and the associated Abelian varities. Topics covered include existence of meromorphic functions, the Riemann-Roch theorem, Abel's theorem, the Jacobi inversion problem, Noether's theorem, and the Riemann vanishing theorem. A complete treatment of the uniformization of Riemann sufaces via Fuchsian groups, including branched coverings, is presented, as are alternate proofs for the most important results, showing the diversity of approaches to the subject. Of interest not only to pure mathematicians, but also to physicists interested in string theory and related topics.Theta Functions on Riemann Surfaces J. D. FayElementary Geometry in Hyperbolic Space Werner FenchelBook by Fenchel, Werner, Fenchel, W.Real Analysis: Modern Techniques and Their Applications Gerald B. FollandAn in-depth look at real analysis and its applications-now expanded and revised.This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension. Lectures on Riemann Surfaces Otto ForsterThis book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one.From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS Algebraic Geometry And Topology: A Symposium In Honor Of S. Lefschetz Ralph Hartzler Fox, Donald Clayton Spencer, Albert William TuckerPrinceton Mathematical Series, No. 12. Additional Editor Is Marston Morse. Contributors Include W. V. D. Hodge, Norman E. Steenrod, S. Lefschetz, And Many Others.A First Course in Abstract Algebra, 7th Edition John B. FraleighConsidered a classic by many, A First Course in Abstract Algebra, Seventh Edition is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gröbner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra For all readers interested in abstract algebra. Complex Analysis 2: Riemann Surfaces, Several Complex Variables, Abelian Functions, Higher Modular Functions Eberhard FreitagThe book contains a complete self-contained introduction to highlights of classical complex analysis. New proofs and some new results are included. All needed notions are developed within the book: with the exception of some basic facts which can be found in the ¯rst volume. There is no comparable treatment in the literature.Linear Algebra, 4th Edition Stephen H. Friedberg, Arnold J. Insel, Lawrence E. SpenceThis top-selling, theorem-proof book presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate. Chapter topics cover vector spaces, linear transformations and matrices, elementary matrix operations and systems of linear equations, determinants, diagonalization, inner product spaces, and canonical forms. For statisticians and engineers.Representation Theory FultonAlgebraic Topology: A First Course William FultonThis book introduces the important ideas of algebraic topology by emphasizing the relation of these ideas with other areas of mathematics. Rather than choosing one point of view of modern topology (homotropy theory, axiomatic homology, or differential topology, say) the author concentrates on concrete problems in spaces with a few dimensions, introducing only as much algebraic machinery as necessary for the problems encountered. This makes it possible to see a wider variety of important features in the subject than is common in introductory texts; it is also in harmony with the historical development of the subject. The book is aimed at students who do not necessarily intend on specializing in algebraic topology.The Theory of Matrices F. R. GantmacherThis treatise, by one of Russia's leading mathematicians, gives in easily accessible form a coherent account of matrix theory with a view to applications in mathematics, theoretical physics, statistics, electrical engineering, etc. The individual chapters have been kept as far as possible independent of each other, so that the reader acquainted with the contents of Chapter 1 can proceed immediately to the chapters of special interest. Until now, much of the material has been available only in the periodical literature.Applications of the Theory of Matrices. F.R. BRENNER, JL (trans.). GANTMACHERIntroduction to Compact Riemann Surfaces and Dessins d'Enfants Ernesto Girondo, Gabino González-DiezFew books on the subject of Riemann surfaces cover the relatively modern theory of dessins d'enfants (children's drawings), which was launched by Grothendieck in the 1980s and is now an active field of research. In this book, the authors begin with an elementary account of the theory of compact Riemann surfaces viewed as algebraic curves and as quotients of the hyperbolic plane by the action of Fuchsian groups of finite type. They then use this knowledge to introduce the reader to the theory of dessins d'enfants and its connection with algebraic curves defined over number fields. A large number of worked examples are provided to aid understanding, so no experience beyond the undergraduate level is required. Readers without any previous knowledge of the field of dessins d'enfants are taken rapidly to the forefront of current research.Finite Groups Daniel GorensteinThe theory of finite simple groups enjoyed a period of spectacular activity in the 1950s and 1960s. The first edition of Gorenstein's book was published in 1968, at the time of some of the first major classification results. The second edition was published in 1980, when it was clear that the classification was understood and the proof was within reach. Gorenstein's treatment of the subject proved prescient, as many of the developments between the two editions could be seen as continuations of the material in the book. Even now, the book remains one of the best sources for an introduction to finite groups and the classification of the simple groups. Gorenstein's insight provides a guiding light through the many pages that have been dedicated to the proof.Algebraic Geometry: Part I: Schemes. With Examples and Exercises Ulrich Görtz, Torsten WedhornThis book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.Algebraic Topology: A First Course Marvin J. Greenberg, John R. HarperGreat first book on algebraic topology. Introduces (co)homology through singular theory.Principles of Algebraic Geometry Phillip Griffiths, Joseph HarrisA comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.Introduction to Algebraic Curves Phillip A. GriffithsAlgebraic curves and compact Riemann surfaces comprise the most developed and arguably the most beautiful portion of algebraic geometry. However, the majority of books written on the subject discuss algebraic curves and compact Riemann surfaces separately, as parts of distinct general theories. Most texts and university courses on curve theory generally conclude with the Riemann-Roch theorem, despite the fact that this theorem is the gateway to some of the most fascinating results in the theory of algebraic curves. This book is based on a six-week series of lectures presented by the author to third- and fourth-year undergraduates and graduate students at Beijing University in 1982. The lectures began with minimal technical requirements (a working knowledge of elementary complex function theory and algebra together with some exposure to topology of compact surfaces) and proceeded directly to the Riemann-Roch and Abel theorems. This book differs from a number of recent books on this subject in that it combines analytic and geometric methods at the outset, so that the reader can grasp the basic results of the subject. Although such modern techniques of sheaf theory, cohomology, and commutative algebra are not covered here, the book provides a solid foundation to proceed to more advanced texts in general algebraic geometry, complex manifolds, and Riemann surfaces, as well as algebraic curves. Containing numerous exercises and two exams, this book would make an excellent introductory text.Algebraic Topology Allen HatcherIn most major universities one of the three or four basic first-year graduate mathematics courses is algebraic topology. This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.Foundations of Geometry David HilbertBook by Hilbert, DavidTopological Methods in Algebraic Geometry: Reprint of the 1978 Edition Friedrich Hirzebruch, F. HirzebruchIn recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables. H. CARTAN and J. -P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be for mulated in terms of sheaf theory. These theorems imply many facts of function theory because the domains of holomorphy are holomorphically complete. They can also be applied to algebraic geometry because the complement of a hyperplane section of an algebraic manifold is holo morphically complete. J. -P. SERRE has obtained important results on algebraic manifolds by these and other methods. Recently many of his results have been proved for algebraic varieties defined over a field of arbitrary characteristic. K. KODAIRA and D. C. SPENCER have also applied sheaf theory to algebraic geometry with great success. Their methods differ from those of SERRE in that they use techniques from differential geometry (harmonic integrals etc. ) but do not make any use of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HODGE have dealt successfully with problems on integrals of the second kind on algebraic manifolds with the help of sheaf theory. I was able to work together with K. KODAIRA and D. C. SPENCER during a stay at the Institute for Advanced Study at Princeton from 1952 to 1954.Linear Algebra Kenneth M Hoffman, Ray KunzeThis introduction to linear algebra features intuitive introductions and examples to motivate important ideas and to illustrate the use of results of theorems.Linear Equations; Vector Spaces; Linear Transformations; Polynomials; Determinants; Elementary canonical Forms; Rational and Jordan Forms; Inner Product Spaces; Operators on Inner Product Spaces; Bilinear Forms For all readers interested in linear algebra. Matrix Analysis Roger A. Horn, Charles R. JohnsonLinear algebra and matrix theory are fundamental tools in mathematical and physical science, as well as fertile fields for research. This new edition of the acclaimed text presents results of both classic and recent matrix analysis using canonical forms as a unifying theme, and demonstrates their importance in a variety of applications. The authors have thoroughly revised, updated, and expanded on the first edition. The book opens with an extended summary of useful concepts and facts and includes numerous new topics and features, such as: - New sections on the singular value and CS decompositions - New applications of the Jordan canonical form - A new section on the Weyr canonical form - Expanded treatments of inverse problems and of block matrices - A central role for the Von Neumann trace theorem - A new appendix with a modern list of canonical forms for a pair of Hermitian matrices and for a symmetric-skew symmetric pair - Expanded index with more than 3,500 entries for easy reference - More than 1,100 problems and exercises, many with hints, to reinforce understanding and develop auxiliary themes such as finite-dimensional quantum systems, the compound and adjugate matrices, and the Loewner ellipsoid - A new appendix provides a collection of problem-solving hints.Algebra Thomas W. HungerfordFinally a self-contained, one volume, graduate-level algebra text that is readable by the average graduate student and flexible enough to accommodate a wide variety of instructors and course contents. The guiding principle throughout is that the material should be presented as general as possible, consistent with good pedagogy. Therefore it stresses clarity rather than brevity and contains an extraordinarily large number of illustrative exercises.Character Theory of Finite Groups Bertram HuppertRepresentation theory and character theory are basic tools for the study of the structure of finite groups. Based on the classical results by Frobenius, Burnside, and Schur, character theory makes a central contribution to the complete classification of finite simple groups. This text serves as an introduction to this part of group theory. The book gives in its first section of self-contained introduction to the charcater theory of finite groups, which can be used for a first lecture on the subject. Later sections concentrate on Clifford theory, that is the relations between characters of a group and its normal subgroups.Character Theory of Finite Groups I Martin IsaacsFinite Group Theory I. Martin IsaacsThe text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur-Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal $p$-complement theorem. Topics that seldom (or never) appear in books are also covered. These include subnormality theory, a group-theoretic proof of Burnside's theorem about groups with order divisible by just two primes, the Wielandt automorphism tower theorem, Yoshida's transfer theorem, the ``principal ideal theorem'' of transfer theory and many smaller results that are not very well known. Proofs often contain original ideas, and they are given in complete detail. In many cases they are simpler than can be found elsewhere. The book is largely based on the author's lectures, and consequently, the style is friendly and somewhat informal. Finally, the book includes a large collection of problems at disparate levels of difficulty. These should enable students to practice group theory and not just read about it. Martin Isaacs is professor of mathematics at the University of Wisconsin, Madison. Over the years, he has received many teaching awards and is well known for his inspiring teaching and lecturing. He received the University of Wisconsin Distinguished Teaching Award in 1985, the Benjamin Smith Reynolds Teaching Award in 1989, and the Wisconsin Section MAA Teaching Award in 1993, to name only a few. He was also honored by being the selected MAA Polya Lecturer in 2003-2005.Lectures in Abstract Algebra I: Basic Concepts N. JacobsonThe present volume is the first of three that will be published under the general title Lectures in Abstract Algebra. These vol umes are based on lectures which the author has given during the past ten years at the University of North Carolina, at The Johns Hopkins University, and at Yale "University. The general plan of the work IS as follows: The present first volume gives an introduction to abstract algebra and gives an account of most of the important algebraIc concepts. In a treatment of this type it is impossible to give a comprehensive account of the topics which are introduced. Nevertheless we have tried to go beyond the foundations and elementary properties of the algebraic sys tems. This has necessitated a certain amount of selection and omission. We feel that even at the present stage a deeper under standing of a few topics is to be preferred to a superficial under standing of many. The second and third volumes of this work will be more special ized in nature and will attempt to give comprehensive accounts of the topics which they treat. Volume II will bear the title Linear Algebra and will deal with the theorv of vectQ!_JlP. -a. ces. . . . . Volume III, The Theory of Fields and Galois Theory, will be con cerned with the algebraic structure offieras and with valuations of fields. All three volumes have been planned as texts for courses.Lectures in Abstract Algebra: III. Theory of Fields and Galois Theory N. JacobsonThe present volume completes the series of texts on algebra which the author began more than ten years ago. The account of field theory and Galois theory which we give here is based on the notions and results of general algebra which appear in our first volume and on the more elementary parts of the second volume, dealing with linear algebra. The level of the present work is roughly the same as that of Volume II. In preparing this book we have had a number of objectives in mind. First and foremost has been that of presenting the basic field theory which is essential for an understanding of modern algebraic number theory, ring theory, and algebraic geometry. The parts of the book concerned with this aspect of the subject are Chapters I, IV, and V dealing respectively with finite dimen sional field extensions and Galois theory, general structure theory of fields, and valuation theory. Also the results of Chapter IlIon abelian extensions, although of a somewhat specialized nature, are of interest in number theory. A second objective of our ac count has been to indicate the links between the present theory of fields and the classical problems which led to its development.Lectures in Abstract Algebra Vol 1-3 Nathan Jacobson3 volume work by Nathan Jacobson in abstract algebraRepresentations and Characters of Groups, Second Edition Gordon James, Martin LiebeckThis is the second edition of the popular textbook on representation theory of finite groups. The authors have revised the text greatly and included new chapters on Characters of GL(2,q) and Permutations and Characters. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. The character tables of many groups are given, including all groups of order less than 32, and all but one of the simple groups of order less than 1000. Each chapter is accompanied by a variety of exercises, and full solutions to all the exercises are provided at the end of the book.Topology Klaus JänichContents: Introduction. - Fundamental Concepts. - Topological Vector Spaces.- The Quotient Topology. - Completion of Metric Spaces. - Homotopy. - The Two Countability Axioms. - CW-Complexes. - Construction of Continuous Functions on Topological Spaces. - Covering Spaces. - The Theorem of Tychonoff. - Set Theory (by T. Br|cker). - References. - Table of Symbols. -Index.Complex Functions: An Algebraic and Geometric Viewpoint Gareth A. Jones, David SingermanElliptic functions and Riemann surfaces played an important role in nineteenth-century mathematics. At the present time there is a great revival of interest in these topics not only for their own sake but also because of their applications to so many areas of mathematical research from group theory and number theory to topology and differential equations. In this book the authors give elementary accounts of many aspects of classical complex function theory including Möbius transformations, elliptic functions, Riemann surfaces, Fuchsian groups and modular functions. A distinctive feature of their presentation is the way in which they have incorporated into the text many interesting topics from other branches of mathematics. This book is based on lectures given to advanced undergraduates and is well-suited as a textbook for a second course in complex function theory. Professionals will also find it valuable as a straightforward introduction to a subject which is finding widespread application throughout mathematics.Compact Riemann Surfaces: An Introduction to Contemporary Mathematics Jürgen JostThis book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.Holomorphic Functions of Several Variables Ludger Kaup, Burchard KaupComplex Abelian Varieties and Theta Functions George R. KempfAbelian varieties are a natural generalization of elliptic curves to higher dimensions, whose geometry and classification are as rich in elegant results as in the one-dimensional ease. The use of theta functions, particularly since Mumford's work, has been an important tool in the study of abelian varieties and invertible sheaves on them. Also, abelian varieties play a significant role in the geometric approach to modern algebraic number theory. In this book, Kempf has focused on the analytic aspects of the geometry of abelian varieties, rather than taking the alternative algebraic or arithmetic points of view. His purpose is to provide an introduction to complex analytic geometry. Thus, he uses Hermitian geometry as much as possible. One distinguishing feature of Kempf's presentation is the systematic use of Mumford's theta group. This allows him to give precise results about the projective ideal of an abelian variety. In its detailed discussion of the cohomology of invertible sheaves, the book incorporates material previously found only in research articles. Also, several examples where abelian varieties arise in various branches of geometry are given as a conclusion of the book.Abelian integrals George. KempfComplex Algebraic Curves Frances KirwanThis development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.Lectures on the icosahedron and the solution of equations of the fifth degree Felix KleinThis book was digitized and reprinted from the collections of the University of California Libraries. Together, the more than one hundred UC Libraries comprise the largest university research library in the world, with over thirty-five million volumes in their holdings. This book and hundreds of thousands of others can be found online in the HathiTrust Digital Library. HP's patented BookPrep technology was used to clean artifacts resulting from use and digitization, improving your reading experience. Despite the cleaning process, occasional flaws may still be present that are part of the original book, reflecting the journey of these collections over a lifetime of use.Lehrbuch der Thetafunktionen Adolf KrazerThis is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book.Introduction to Plane Algebraic Curves Ernst Kunz* Employs proven conception of teaching topics in commutative algebra through a focus on their applications to algebraic geometry, a significant departure from other works on plane algebraic curves in which the topological-analytic aspects are stressed*Requires only a basic knowledge of algebra, with all necessary algebraic facts collected into several appendices * Studies algebraic curves over an algebraically closed field K and those of prime characteristic, which can be applied to coding theory and cryptography * Covers filtered algebras, the associated graded rings and Rees rings to deduce basic facts about intersection theory of plane curves, applications of which are standard tools of computer algebra * Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook Abelian Varieties S. LangA belian Varieties has been out of print for a while. Since it was written, the subject has made some great advances, and Mumford's book giving a scheme theoretic treatment has appeared (D. Mum- ford, Abelian Varieties, Tata Lecture Notes, Oxford University Press, London, 1970). However, some topics covered in my book were not covered in Mumford's; for instance, the construction of the Picard variety, the Albanese variety, some formulas concern- ing numerical questions, the reciprocity law for correspondences and its application to Kummer theory, Chow's theory for the K/k-trace and image, and others. Several people have told me they still found a number of sections of my book useful. There- fore I thank Springer-Verlag for the opportunity to keep the book in print. S. LANG v FOREWORD Pour des simplifications plus subs tan- tielles, Ie developpement futur de la geometrie algebrique ne saurait manquer sans do ute d' en faire apparaitre. It is with considerable pleasure that we have seen in recent years the simplifications expected by Weil realize themselves, and it has seemed timely to incorporate them into a new book. We treat exclusively abelian varieties, and do not pretend to write a treatise on algebraic groups. Hence we have summarized in a first chapter all the general results on algebraic groups that are used in the sequel. They are all foundational results.Algebra Serge LangThis book is intended as a basic text for a one year course in algebra at the graduate level or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text. From MathSciNet's review of the first edition: "The author has an impressive knack for presenting the important and interesting ideas of algebra in just the "right" way, and he never gets bogged down in the dry formalism which pervades some parts of algebra."Introduction to Algebraic and Abelian Functions: 089 Serge LangIntroduction to Algebraic and Abelian Functions is a self-contained presentation of a fundamental subject in algebraic geometry and number theory. For this revised edition, the material on theta functions has been expanded, and the example of the Fermat curves is carried throughout the text. This volume is geared toward a second-year graduate course, but it leads naturally to the study of more advanced books listed in the bibliography.Complex Tori Herbert Lange, Christina BirkenhakeA complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =Linear Algebra and Its Applications, 4th Edition David C. LayLinear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. David Lay introduces these concepts early in a familiar, concrete Rn setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.Note: This is the standalone book, if you want the book/access card order the ISBN below. 0321399145 / 9780321399144 Linear Algebra plus MyMathLab Getting Started Kit for Linear Algebra and Its Applications Package consists of: 0321385179 / 9780321385178 Linear Algebra and Its Applications 0321431308 / 9780321431301 MyMathLab/MyStatLab — Glue-in Access Card 0321654064 / 9780321654069 MyMathLab Inside Star Sticker Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations Wilhelm Magnus, Abraham Karrass, Donald SolitarA seminal, much-cited account of combinatorial group theory — coauthored by a distinguished teacher of mathematics and a pair of his colleagues — this text for graduate students features numerous helpful exercises.The book begins with a fairly elementary exposition of basic concepts and a discussion of factor groups and subgroups. The topics of Nielsen transformations, free and amalgamated products, and commutator calculus receive detailed treatment. The concluding chapter surveys word, conjugacy, and related problems; adjunction and embedding problems; varieties of groups; products of groups; and residual and Hopfian properties. In addition to the exercises, which appear throughout the text, supplementary materials include an extensive bibliography of important books and monographs, as well as a list of theorems, corollaries, and definitions and a list of symbols and abbreviations. Kleinian Groups: v. 287 Bernard MaskitThe modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods.A Basic Course in Algebraic Topology W.S. MasseyThe main purpose of this book is to give a systematic treatment of singular homology and cohomology theory. It is in some sense a sequel to the author's previous book in this Springer-Verlag series entitled Algebraic Topology: An Introduction. This earlier book is definitely not a logical prerequisite for the present volume. However, it would certainly be advantageous for a prospective reader to have an acquaintance with some of the topics treated in that earlier volume, such as 2-dimensional manifolds and the funda mental group. Singular homology and cohomology theory has been the subject of a number of textbooks in the last couple of decades, so the basic outline of the theory is fairly well established. Therefore, from the point of view of the mathematics involved, there can be little that is new or original in a book such as this. On the other hand, there is still room for a great deal of variety and originality in the details of the exposition. In this volume the author has tried to give a straightforward treatment of the subject matter, stripped of all unnecessary definitions, terminology, and technical machinery. He has also tried, wherever feasible, to emphasize the geometric motivation behind the various concepts.A Concise Course in Algebraic Topology J. P. MayAlgebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields.J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field. More Concise Algebraic Topology: Localization, Completion, and Model Categories J. P. May, K. PontoWith firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.Differential topology, John Willard MilnorTopology from the Differentiable Viewpoint John Willard MilnorThis elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.By Rick Miranda - Algebraic Curves and Riemann Surfaces Rick MirandaGeneral Topology Jesper M. MollerGeneral Topology By Jesper M. MollerAbelian Varieties David MumfordThis is a reprinting of the revised second edition (1974) of David Mumford's classic 1970 book. It gives a systematic account of the basic results about abelian varieties. It includes expositions of analytic methods applicable over the ground field of complex numbers, as well as of scheme-theoretic methods used to deal with inseparable isogenies when the ground field has positive characteristic. A self-contained proof of the existence of the dual abelian variety is given. The structure of the ring of endomorphisms of an abelian variety is discussed. These are appendices on Tate's theorem on endomorphisms of abelian varieties over finite fields (by C. P. Ramanujam) and on the Mordell - Weil theorem (by Yuri Manin).David Mumford was awarded the 2007 AMS Steele Prize for Mathematical Exposition. According to the citation: '"Abelian Varieties"...remains the definitive account of the subject...the classical theory is beautifully intertwined with the modern theory, in a way which sharply illuminates both...[It] will remain for the foreseeable future a classic to which the reader returns over and over'.Algebraic Geometry I: Complex Projective Varieties David MumfordFrom the reviews: "Although several textbooks on modern algebraic geometry have been published in the meantime, Mumford's "Volume I" is, together with its predecessor the red book of varieties and schemes, now as before one of the most excellent and profound primers of modern algebraic geometry. Both books are just true classics!" ZentralblattCurves and Their Jacobians David MumfordIndra's Pearls: The Vision of Felix Klein David Mumford, Caroline Series, David WrightFelix Klein, a great geometer of the nineteenth century, rediscovered an idea from Hindu mythology in mathematics: the heaven of Indra in which the whole Universe was mirrored in each pearl in a net of pearls. Practically impossible to represent by hand, this idea barely existed outside the imagination, until the 1980s when the authors embarked on the first computer investigation of Klein's vision. In this extraordinary book they explore the path from some basic mathematical ideas to the simple algorithms that create delicate fractal filigrees, most appearing in print for the first time. Step-by-step instructions for writing computer programs allow beginners to generate the images.The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and their Jacobians (Lecture Notes in Mathematics) David MumfordMumford's famous "Red Book" gives a simple, readable account of the basic objects of algebraic geometry, preserving as much as possible their geometric flavor and integrating this with the tools of commutative algebra. It is aimed at graduates or mathematicians in other fields wishing to quickly learn aboutalgebraic geometry. This new edition includes an appendix that gives an overview of the theory of curves, their moduli spaces and their Jacobians — one of the most exciting fields within algebraic geometry.Tata Lectures on Theta I David MumfordThis volume is the first of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).Tata Lectures on Theta III David MumfordThis volume is the third of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).Tata Lectures on Theta: No. 2 David MumfordThis book is the second in a three part series surveying the theory of theta functions. This volume gives emphasis to the special properties of the theta functions associated with compact Riemann surfaces and how they lead to solutions of the Korteweg-de Vries equation as well as other non-linear differential equations of mathematical physics. This book presents an explicit elementary construction of hyperelliptic Jacobian varieties and is a self-contained introduction to the theory of the Jacobians. It also ties together nineteenth-century dsicoveries due to Jacobi, Neumann, and Frobenius with recent discoveries of Gelfand, McKean, Moser, John Fay, and others. a definitive book on theta functions. hardcover by David Mumford.Stability of projective varieties : lectures ... David International Mathematical Union. MumfordTopology James MunkresThis text suitable for postgraduate students in mathematics offers a clear, comprehensive presentation of the fundamentals of topology. It can also be effectively used at the senior undergraduate level for a basic introduction to the core topics of topology. The book's broad coverage of topics and flexible organization allows instructors to follow their own preferences in the matter of course emphasis. The second edition is divided into two parts-general topology and algebraic topology.Elements Of Algebraic Topology James R. MunkresElements of Algebraic Topology provides the most concrete approach to the subject. With coverage of homology and cohomology theory, universal coefficient theorems, Kunneth theorem, duality in manifolds, and applications to classical theorems of point-set topology, this book is perfect for comunicating complex topics and the fun nature of algebraic topology for beginners.Compact Riemann Surfaces R. NarasimhanThese notes form the contents of a Nachdiplomvorlesung given at the Forschungs- institut fur Mathematik of the Eidgenossische Technische Hochschule, Zurich from November, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. Jurgen Moser have encouraged me to write them up for inclusion in the series, published by Birkhiiuser, of notes of these courses at the ETH. Dr. Albert Stadler produced detailed notes of the first part of this course, and very intelligible class-room notes of the rest. Without this work of Dr. Stadler, these notes would not have been written. While I have changed some things (such as the proof of the Serre duality theorem, here done entirely in the spirit of Serre's original paper), the present notes follow Dr. Stadler's fairly closely. My original aim in giving the course was twofold. I wanted to present the basic theorems about the Jacobian from Riemann's own point of view. Given the Riemann-Roch theorem, if Riemann's methods are expressed in modern language, they differ very little (if at all) from the work of modern authors.Algebraic Geometry F. OortProceedings of the Vth Nordic Summer School in Mathematics in Oslo, August 5-25, 1970Algebraic Geometry III: Complex Algebraic Varieties Algebraic Curves and Their Jacobians A.N. Parshin, I.R. ShafarevichThis two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.The Algebraic Structure of Group Rings Donald S. Passman"Highly recommended" by the Bulletin of the London Mathematical Society, this comprehensive, self-contained treatment of group rings was written by an authority on the subject. Suitable for graduate students, it was hailed by the Bulletin of the American Mathematical Society as "a majestic account… encyclopedic and lucid."The three-part survey begins with an introduction that defines the trace map, considers the augmentation ideal in considerable detail, and provides all the necessary group ring results for later characterizations of dimension subgroups. A second section on linear identities characterizes prime and semiprime group rings, brings semisimplicity considerations into play, and offers construction techniques for obtaining primitive group rings. The final part, an exploration of finiteness properties, consists chiefly of a study of Noetherian group rings. Hundreds of exercises of varying difficulty appear throughout the text. Algebraic Geometry: An Introduction Daniel PerrinAimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.Papers on Topology: Analysis Situs and Its Five Supplements Henri PoincareJohn Stillwell was the recipient of the Chauvenet Prize for Mathematical Exposition in 2005. The papers in this book chronicle Henri Poincaré's journey in algebraic topology between 1892 and 1904, from his discovery of the fundamental group to his formulation of the Poincaré conjecture. For the first time in English translation, one can follow every step (and occasional stumble) along the way, with the help of translator John Stillwell's introduction and editorial comments. Now that the Poincaré conjecture has finally been proved, by Grigory Perelman, it seems timely to collect the papers that form the background to this famous conjecture. Poincaré's papers are in fact the first draft of algebraic topology, introducing its main subject matter (manifolds) and basic concepts (homotopy and homology). All mathematicians interested in topology and its history will enjoy this book. This volume is one of an informal sequence of works within the History of Mathematics series. Volumes in this subset, "Sources", are classical mathematical works that served as cornerstones for modern mathematical thought.Topological Groups L. S. PontryaginTopology Problem Solver The Editors of REAThorough coverage is given to the fundamental concepts of topology, axiomatic set theory, mappings, cardinal numbers, ordinal numbers, metric spaces, topological spaces, separation axioms, Cartesian products, the elements of homotopy theory, and other topics. A comprehensive study aid for the graduate student and beyond.Undergraduate Algebraic Geometry Miles ReidAlgebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. With the minimum of prerequisites, Dr. Reid introduces the reader to the basic concepts of algebraic geometry, including: plane conics, cubics and the group law, affine and projective varieties, and nonsingularity and dimension. He stresses the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book contains numerous examples and exercises illustrating the theory.Elliptic Curves: Notes from Postgraduate Lectures Given in Lausanne 1971/72 A. RobertComplex Analysis: 245 Rubi Rodriguez, Irwin Kra, Jane P. GilmanThis book is intended for a graduate course in complex analysis, where the main focus is the theory of complex-valued functions of a single complex variable. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two- and three-manifolds, and number theory. Complex analysis has connections and applications to many other subjects in mathematics and to other sciences. Thus this material will also be of interest to computer scientists, physicists, and engineers.The book covers most, if not all, of the material contained in Lipman Bers’s courses on first year complex analysis. In addition, topics of current interest, such as zeros of holomorphic functions and the connection between hyperbolic geometry and complex analysis, are explored.In addition to many new exercises, this second edition introduces a variety of new and interesting topics. New features include a section on Bers's theorem on isomorphisms between rings of holomorphic functions on plane domains; necessary and sufficient conditions for the existence of a bounded analytic function on the disc with prescribed zeros; sections on subharmonic functions and Perron's principle; and a section on the ring of holomorphic functions on a plane domain. There are three new appendices: the first is a contribution by Ranjan Roy on the history of complex analysis, the second contains background material on exterior differential calculus, and the third appendix includes an alternate approach to the Cauchy theory.Elementary Analysis: The Theory of Calculus Kenneth A. RossFor over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging.The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions. Review from the first edition: "This book is intended for the student who has a good, but naïve, understanding of elementary calculus and now wishes to gain a thorough understanding of a few basic concepts in analysis.... The author has tried to write in an informal but precise style, stressing motivation and methods of proof, and ... has succeeded admirably." —MATHEMATICAL REVIEWS Fourier Analysis on Groups Walter RudinIn the late 1950s, many of the more refined aspects of Fourier analysis were transferred from their original settings (the unit circle, the integers, the real line) to arbitrary locally compact abelian (LCA) groups. Rudin's book, published in 1962, was the first to give a systematic account of these developments and has come to be regarded as a classic in the field. The basic facts concerning Fourier analysis and the structure of LCA groups are proved in the opening chapters, in order to make the treatment relatively self-contained.Function theory in polydiscs Walter Rudinlooks new to meFunction Theory in the Unit Ball of Cn Walter RudinFunction Theory in the Unit Ball of Cn. From the reviews: "…The book is easy on the reader. The prerequisites are minimal―just the standard graduate introduction to real analysis, complex analysis (one variable), and functional analysis. This presentation is unhurried and the author does most of the work. …certainly a valuable reference book, and (even though there are no exercises) could be used as a text in advanced courses." R. Rochberg in Bulletin of the London Mathematical Society. "…an excellent introduction to one of the most active research fields of complex analysis. …As the author emphasizes, the principal ideas can be presented clearly and explicitly in the ball, specific theorems can be quickly proved. …Mathematics lives in the book: main ideas of theorems and proofs, essential features of the subjects, lines of further developments, problems and conjectures are continually underlined. …Numerous examples throw light on the results as well as on the difficulties." C. Andreian Cazacu in Zentralblatt für Mathematik Functional Analysis Walter RudinThis classic text is written for graduate courses in functional analysis. This text is used in modern investigations in analysis and applied mathematics. This new edition includes up-to-date presentations of topics as well as more examples and exercises. New topics include Kakutani's fixed point theorem, Lamonosov's invariant subspace theorem, and an ergodic theorem.This text is part of the Walter Rudin Student Series in Advanced Mathematics. Principles of Mathematical Analysis. Second Edition Walter RudinThis book is intended to serve as a text for the course in analysis that is usually taken by advanced undergraduates or by first-year graduate students who study mathematics. The principal difference between the present edition and the first edition published ten years ago is that functions of several variables are now treated much more thoroughly. This change was made in response to numerous suggestions by users of the book. Chapter 9 now begins with a discussion of some basic vector-space concepts; derivatives of transformations are then defined as linear transformations; the inverse function theorem and some of its important consequences are formulated and proved in a determinant-free manner; the transformation properties of differential forms are established, and the chapter ends with a fairly general version of Stokes' theorem-the n-dimensional analogue of the fundamental theorem of calculus. In preparation for this, Chapters 2 and 4 contain more material on Euclidean spaces, and on metric spaces, than they did. This added generality should cause no added difficulty, though. The theorems presented here are no harder in the present setting than they are on the line or in the plane. No major changes were made in the other chapters, but much of the material was rewritten and many details were improved. The first part of Chapter 1, in which the real numbers are constructed by means of cuts in the rational number system, may be omitted at a first reading; if this is done, a logical foundation for the rest of the work can be obtained by taking the Dedekind theorem as a postulate and as a starting point. Chapters 1 to 7 should be taken up in the order in which they are presented. The three final chapters, however, are almost independent of each other. The number of problems has been increased to about 200. Some of these involve fairly direct applications of the results obtained in the text, while others will challenge the ingenuity of the better students.Real and Complex Analysis Walter RudinThis is an advanced text for the one- or two-semester course in analysis taught primarily to math, science, computer science, and electrical engineering majors at the junior, senior or graduate level. The basic techniques and theorems of analysis are presented in such a way that the intimate connections between its various branches are strongly emphasized. The traditionally separate subjects of 'real analysis' and 'complex analysis' are thus united in one volume. Some of the basic ideas from functional analysis are also included. This is the only book to take this unique approach. The third edition includes a new chapter on differentiation. Proofs of theorems presented in the book are concise and complete and many challenging exercises appear at the end of each chapter. The book is arranged so that each chapter builds upon the other, giving students a gradual understanding of the subject.This text is part of the Walter Rudin Student Series in Advanced Mathematics. An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces Martin SchlichenmaierThis book gives an introduction to modern geometry. Starting from an elementary level, the author develops deep geometrical concepts that play an important role in contemporary theoretical physics, presenting various techniques and viewpoints along the way. This second edition contains two additional, more advanced geometric techniques: the modern language and modern view of Algebraic Geometry and Mirror Symmetry.ELEMENTS OF THE THEORY OF ALGEBRAIC CURVES. A Volume in Addison-Wesley Series in Mathematics. A. SEIDENBERGBy Jean-Pierre Serre - Linear Representations Of Finite Groups: 4th (fourth) Edition Jean-Pierre SerreAbelian Varieties with Complex Multiplication and Modular Functions Goro ShimuraReciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900 Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions.This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. The investigation of such algebraicity is relatively new, but has attracted the interest of increasingly many researchers. Many of the topics discussed in this book have not been covered before. In particular, this is the first book in which the topics of various algebraic relations among the periods of abelian integrals, as well as the special values of theta and Siegel modular functions, are treated extensively. Topics in Complex Function Theory, Elliptic Functions and Uniformization Theory C. L. SiegelDevelops the higher parts of function theory in a unified presentation. Starts with elliptic integrals and functions and uniformization theory, continues with automorphic functions and the theory of abelian integrals and ends with the theory of abelian functions and modular functions in several variables. The last topic originates with the author and appears here for the first time in book form.Lectures on Riemann matrices, Carl Ludwig SiegelLecture Notes on Elementary Topology and Geometry I.M. Singer, J.A. ThorpeAt the present time, the average undergraduate mathematics major finds mathematics heavily compartmentalized. After the calculus, he takes a course in analysis and a course in algebra. Depending upon his interests (or those of his department), he takes courses in special topics. Ifhe is exposed to topology, it is usually straightforward point set topology; if he is exposed to geom etry, it is usually classical differential geometry. The exciting revelations that there is some unity in mathematics, that fields overlap, that techniques of one field have applications in another, are denied the undergraduate. He must wait until he is well into graduate work to see interconnections, presumably because earlier he doesn't know enough. These notes are an attempt to break up this compartmentalization, at least in topology-geometry. What the student has learned in algebra and advanced calculus are used to prove some fairly deep results relating geometry, topol ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for surfaces, the functorial relation of fundamental group to covering space, and surfaces of constant curvature as homogeneous spaces are the most note worthy examples.) In the first two chapters the bare essentials of elementary point set topology are set forth with some hint ofthe subject's application to functional analysis.An Invitation to Algebraic Geometry Karen Smith, Lauri Kahanpää, Pekka Kekäläinen, William TravesThis is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.Polynomial Invariants of Finite Groups Larry SmithWritten by an algebraic topologist motivated by his own desire to learn, this well-written book represents the compilation of the most essential and interesting results and methods in the theory of polynomial invariants of finite groups. From the table of contents: - Invariants and Relative Invariants - Finite Generation of Invariants - Construction of Invariants - Poincaré Series - Dimension Theoretic Properties of Rings of Invariants - Homological Properties of Invariants - Groups Generated by Reflections - Modular Invariants - Polynomial Tensor Exterior Algebras - Invariant Theory and Algebraic Topology - The Steenrod Algebra and Modular Invariant TheorySelected topics in algebraic geometry - II. Supplemental report of the Committee on rational transformations Virgil, ; Black, Amos Hale, ; Dye, Leaman Andrew. National Research Council U.S.. SnyderIntroduction to Riemann Surfaces George S. SpringerThis well-known book is a self-contained treatment of the classical theory of abstract Riemann surfaces. The first five chapters cover the requisite function theory and topology for Riemann surfaces. The second five chapters cover differentials and uniformization. For compact Riemann surfaces, there are clear treatments of divisors, Weierstrass points, the Riemann-Roch theorem and other important topics. Springer's book is an excellent text for an introductory course on Riemann surfaces. It includes exercises after each chapter and is illustrated with a beautiful set of figures.Counterexamples in Topology Lynn Arthur Steen, J. Arthur Seebach Jr.Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Over 25 Venn diagrams and charts summarize properties of the examples, while discussions of general methods of construction and change give readers insight into constructing counterexamples. Includes problems and exercises, correlated with examples. Bibliography. 1978 edition.Representation Theory of Finite Groups: An Introductory Approach Benjamin SteinbergThis book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.The Four Pillars of Geometry John StillwellThis book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariantsApproach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises Linear Algebra and Its Applications, 4th Edition Gilbert Strang4th Edition printed by Brooks Cole India. Same content as the hardcover version. Pages are printed in black and white.Geometric Topology: Localization, Periodicity and Galois Symmetry: The 1970 MIT Notes Dennis P. Sullivan, Andrew RanickiThe seminal ‘MIT notes’ of Dennis Sullivan were issued in June 1970 and were widely circulated at the time. The notes had a - jor in?uence on the development of both algebraic and geometric topology, pioneering the localization and completion of spaces in homotopy theory, including p-local, pro?nite and rational homotopy theory, le- ing to the solution of the Adams conjecture on the relationship between vector bundles and spherical ?brations, the formulation of the ‘Sullivan conjecture’ on the contractibility of the space of maps from the classifying space of a ?nite group to a ?nite dimensional CW complex, theactionoftheGalois groupoverQofthealgebraicclosureQof Q on smooth manifold structures in pro?nite homotopy theory, the K-theory orientation ofPL manifolds and bundles. Some of this material has been already published by Sullivan him- 1 self: in an article in the Proceedings of the 1970 Nice ICM, and in the 1974 Annals of Mathematics papers Genetics of homotopy theory and the Adams conjecture and The transversality character- 2 istic class and linking cycles in surgery theory . Many of the ideas originating in the notes have been the starting point of subsequent 1 reprinted at the end of this volume 2 joint with John Morgan vii viii 3 developments . However, the text itself retains a unique ?avour of its time, and of the range of Sullivan’s ideas.Group Theory I M. SuzukiGroup Theory II M. SuzukiThis is a translation from the Japanese of the second volume (chapters four through six) of my book "Gunron" (Iwanami Shoten, 1978). After discussing the concept of commutators in the fourth chapter, we tum to a discussion of the methods and theorems pertaining to finite groups. The last chapter is intended as an introduction to the recent progress in the theory of simple groups. Forihe translation, I have kept the main body of the text unchanged, however I have added a few comments in the last chapter in order to inform the readers of the most recent progress. I would like to express my appreciation to Kazuko Suzuki for her devoted help in translating this book. Finally, it gives me great pleasure to acknowl edge my indebtedness to my wife, Naoko, for her constant support and understanding, and for converting the long and often illegible manuscript into a beautifully typed one. To her, I express my sincere thanks and appreciation. July, 1985 Michio Suzuki Contents (Part II) List of Notation IX Chapter 4 Commutators § 1. Commutator Subgroups §2. Nilpotent Groups 13 37 §3. Commutator Calculations 54 §4. Finite p-Groups . . .Analytic Theory of Abelian Varieties H. P. F. Swinnerton-DyerThe study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however.Galois Groups and Fundamental Groups Tamás SzamuelyEver since the concepts of Galois groups in algebra and fundamental groups in topology emerged during the nineteenth century, mathematicians have known of the strong analogies between the two concepts. This book presents the connection starting at an elementary level, showing how the judicious use of algebraic geometry gives access to the powerful interplay between algebra and topology that underpins much modern research in geometry and number theory. Assuming as little technical background as possible, the book starts with basic algebraic and topological concepts, but already presented from the modern viewpoint advocated by Grothendieck. This enables a systematic yet accessible development of the theories of fundamental groups of algebraic curves, fundamental groups of schemes, and Tannakian fundamental groups. The connection between fundamental groups and linear differential equations is also developed at increasing levels of generality. Key applications and recent results, for example on the inverse Galois problem, are given throughout.Analysis I Terence TaoAnalysis II Terence TaoThis is part one of a two-volume introduction to real analysis and is intended for honours undergraduates, who have already been exposed to calculus. The emphasis is on rigour and on foundations. The material starts at the very beginning - the construction of number systems and set theory, then goes on to the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. There are appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of twenty-five to thirty lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory. The second edition has been extensively revised and updated.The geometry and topology of 3-manifolds William P ThurstonThree-Dimensional Geometry and Topology, Vol. 1 William P. Thurston, Silvio LevyThis book develops some of the extraordinary richness, beauty, and power of geometry in two and three dimensions, and the strong connection of geometry with topology. Hyperbolic geometry is the star. A strong effort has been made to convey not just denatured formal reasoning (definitions, theorems, and proofs), but a living feeling for the subject. There are many figures, examples, and exercises of varying difficulty.This book was the origin of a grand scheme developed by Thurston that is now coming to fruition. In the 1920s and 1930s the mathematics of two-dimensional spaces was formalized. It was Thurston's goal to do the same for three-dimensional spaces. To do this, he had to establish the strong connection of geometry to topology—the study of qualitative questions about geometrical structures. The author created a new set of concepts, and the expression "Thurston-type geometry" has become a commonplace. Three-Dimensional Geometry and Topology had its origins in the form of notes for a graduate course the author taught at Princeton University between 1978 and 1980. Thurston shared his notes, duplicating and sending them to whoever requested them. Eventually, the mailing list grew to more than one thousand names. The book is the culmination of two decades of research and has become the most important and influential text in the field. Its content also provided the methods needed to solve one of mathematics' oldest unsolved problems—the Poincaré Conjecture. In 2005 Thurston won the first AMS Book Prize, for Three-dimensional Geometry and Topology. The prize recognizes an outstanding research book that makes a seminal contribution to the research literature. Thurston received the Fields Medal, the mathematical equivalent of the Nobel Prize, in 1982 for the depth and originality of his contributions to mathematics. In 1979 he was awarded the Alan T. Waterman Award, which recognizes an outstanding young researcher in any field of science or engineering supported by the National Science Foundation. Homology Theory: An Introduction to Algebraic Topology James W. VickThis introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.Geometry II: Spaces of Constant Curvature E.B. VinbergA very clear account of the subject from the viewpoints of elementary geometry, Riemannian geometry and group theory – a book with no rival in the literature. Mostly accessible to first-year students in mathematics, the book also includes very recent results which will be of interest to researchers in this field.Algebraic curves Robert John WalkerThis book was written to furnish a starting point for the study of algebraic geometry. The topics presented and methods of presenting them were chosen with the following ideas in mind; to keep the treat ment as elementary as possible, to introduce some of the recently devel oped algebraic methods of handling problems of algebraic geometry, to show how these methods are related to the older analytic and geometric methods, and to apply the general methods to specific geometric prob lems. These criteria led to a selection of topics from the theory of curves, centering around birational transformations and linear series. Experience in teaching the material showed the need of an intro duction to the underlying algebra and projective geometry, so this is supplied in the first two chapters. The inclusion of this material makes the book almost entirely self-contained. Methods of presentation, proof of theorems, and problems, have been adapted from various sources. We should mention, in particular, Severi-Laffier, Vorlesungen uber Algebraische Geometrie, van der Waerden, Algebraische Geometrie and Moderne Algebra, and lecture notes of S. Lefschetz and O. Zariski. We also wish to thank Mr. R. L. Beinert and Prof. G. L. Walker for suggestions and assistance with the proof, and particularly Prof. Saunders MacLane for a very careful examination and criticism of an early version of the work. R. J. WALKER Cornell University December 1, 1949 Contents Preface .Galois Theory Steven WeintraubGalois theory is a mature mathematical subject of particular beauty. Any Galois theory book written nowadays bears a great debt to Emil Artin’s classic text "Galois Theory," and this book is no exception. While Artin’s book pioneered an approach to Galois theory that relies heavily on linear algebra, this book’s author takes the linear algebra emphasis even further. This special approach to the subject together with the clarity of its presentation, as well as the choice of topics covered, has made the first edition of this book a more than worthwhile addition to the literature on Galois Theory. The second edition, with a new chapter on transcendental extensions, will only further serve to make the book appreciated by and approachable to undergraduate and beginning graduate math majors.Representation Theory of Finite Groups: Algebra and Arithmetic Steven H. Weintraub'We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own' - from the Preface. Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, it has been one of the great tools in the study and classification of finite groups. The theory contains some particularly beautiful results: Frobenius' theorem, Burnside's theorem, Artin's theorem, Brauer's theorem - all of which are covered in this textbook. Some seem uninspiring at first but prove to be quite useful. Others are clearly deep from the outset.And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers.The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.Graphs of Groups on Surfaces: Interactions and Models A.T. WhiteThe book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English church-bell music. The latter is facilitated by imbedding the right graph of the right group on an appropriate surface, with suitable symmetries. Throughout the emphasis is on Cayley maps: imbeddings of Cayley graphs for finite groups as (possibly branched) covering projections of surface imbeddings of loop graphs with one vertex. This is not as restrictive as it might sound; many developments in topological graph theory involve such imbeddings.The approach aims to make all this interconnected material readily accessible to a beginning graduate (or an advanced undergraduate) student, while at the same time providing the research mathematician with a useful reference book in topological graph theory. The focus will be on beautiful connections, both elementary and deep, within mathematics that can best be described by the intuitively pleasing device of imbedding graphs of groups on surfaces. Graphs, Groups and Surfaces Arthur T. WhiteThe field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing. Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'' and 9 as ``unsolved''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''.General Topology Stephen WillardAmong the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: "continuous topology," represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and "geometric topology," covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340 exercises in all). The text's value as a reference work is enhanced by a collection of historical notes, a bibliography, and index. 1970 edition. 27 figures.Finite Groups of Mapping Classes of Surfaces H. Zieschang |